(-3)=2x^2-4

Simple and best practice solution for (-3)=2x^2-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3)=2x^2-4 equation:



(-3)=2x^2-4
We move all terms to the left:
(-3)-(2x^2-4)=0
We add all the numbers together, and all the variables
-(2x^2-4)-3=0
We get rid of parentheses
-2x^2+4-3=0
We add all the numbers together, and all the variables
-2x^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 1/4x+3=3/5x-18 | | 2(g−8)−5=1 | | x+41=4x-7 | | -9(r)=(2)/(3)r-6 | | 2x+3{x-5}=25 | | 9r+7=4r−8 | | (3/4)(x-16)=-2(x-3)+4 | | 19c+12=50 | | 5(v+6)-7v=26 | | 6(r-74)=96 | | 2k+5—7k=8+3 | | –8−6q=–5q | | 8x-2=-9+17x | | 7x+15-9x=1.2 | | 24x=49 | | (-5x+1)/(-9x+1)=1 | | -8(-7-4b)=312 | | 10x-26=7x+10=180 | | 8+.50x=15 | | q+10=22 | | 2(x-5)=2x+11 | | 25-2x=x+88 | | 12j+4j+6j-19j+7j=20 | | .4x+.25(107-x)=34 | | 1/2x(2+4)=24 | | 40+9x=7(1+6x) | | (4x+12)=(7x-4) | | 3(4x-9)=-9 | | x=204x+30 | | 12x=4x(x+5) | | -x+25=17 | | x=9x+20 |

Equations solver categories